TABLE S1: Estimated critical screening parameters of Hulthén potential, for some high-lying states having $n=6-10, \ell=0-9$, along with literature results.

State	δ_{c}		State	δ_{c}	
	PR^{\dagger}	Literature		PR^{\dagger}	Literature
$6 s$	0.0555555	0.055556^{a}	$6 g$	0.04058464	$0.040585^{a}, 0.04058464{ }^{\text {b }}$
$7 s$	0.0408163	0.040816^{a}	7 g	0.03135273	$0.031353^{a}, 0.03135273^{b}$
$8 s$	0.0312499	0.031250^{a}	$8 g$	0.0249258	$0.024926^{a}, 0.0249258^{b}$
$9 s$	0.0246913	$0.024691{ }^{a}$	$9 g$	0.0202774	$0.020278^{a}, 0.0202774{ }^{b}$
10 s	0.0199999	$0.020000^{\text {a }}$	10 g	0.0168095	$0.016810^{a}, 0.0168095^{b}$
$6 p$	0.0515788	$0.051579^{a}, 0.051536{ }^{\text {b }}$	6 h	0.03750415	$0.037504{ }^{a}, 0.03750415^{b}$
$7 p$	0.0383973	$0.038398^{a}, 0.038365^{b}$	$7 h$	0.02928423	$0.029284^{a}, 0.02928423^{b}$
$8 p$	0.0296803	$0.029681^{a}, 0.029654^{b}$	$8 h$	0.02347828	$0.023478{ }^{a}, 0.02347828^{b}$
$9 p$	0.0236212	$0.023621^{a}, 0.023599^{b}$	9h	0.0192297	$0.019230^{a}, 0.0192297{ }^{\text {b }}$
$10 p$	0.0192398	$0.019240^{a}, 0.019222^{b}$	10 h	0.0160298	$0.016030^{a}, 0.0160298^{b}$
$6 d$	0.04766137	$0.047661^{a}, 0.0476580^{b}$	$7 i$	0.02737901	0.027379^{a}
$7 d$	0.0359476	$0.035948^{a}, 0.0359445^{b}$	$8 i$	0.02212412	0.022124^{a}
$8 d$	0.0280578	$0.028058^{a}, 0.0280547^{b}$	$9 i$	0.0182370	0.018237^{a}
$9 d$	0.0224966	$0.022497{ }^{a}, 0.0224936{ }^{\text {b }}$	$10 i$	0.0152833	$0.015283{ }^{a}$
$10 d$	0.0184326	$0.018433{ }^{a}, 0.0184299{ }^{\text {b }}$	$8 k$	0.02086426	0.020864^{a}
$6 f$	0.04397459	$0.043975^{a}, 0.04397452^{\text {b }}$	$9 k$	0.01730265	0.017303^{a}
$7 f$	0.03358103	$0.0335811^{a}, 0.03358094{ }^{\text {b }}$	$10 k$	0.0145735	$0.014573{ }^{\text {a }}$
$8 f$	0.0264591	$0.026459^{a}, 0.02645904^{b}$	92	0.01642647	$0.016427{ }^{a}$
$9 f$	0.0213719	$0.021372^{a}, 0.02137183^{b}$	10 l	0.0139017	0.013902^{a}
$10 f$	0.0176149	$0.017615^{a}, 0.0176147^{b}$	10 m	0.0132679	0.013268^{a}

TABLE S2: Estimated critical screening parameters of Yukawa potential, for some high-lying states having $n=6-10, \ell=0-9$, along with literature results. PR implies Present Result.

State	δ_{c}		State	δ_{c}	
	PR	Literature [3]		PR	Literature [3]
$6 s$	0.035182	0.03518	$6 g$	0.023799103	0.02380
$7 s$	0.025874	0.0258	$7 g$	0.018646215	0.01864
$8 s$	0.019824	0.0198	$8 g$	0.014980862	0.01498
$9 s$	0.015672	0.0156	9 g	0.012286145	0.01228
$10 s$	0.012699		10 g	0.010250170	
$6 p$	0.032174932	0.03217	$6 h$	0.021524548	0.02152
$7 p$	0.024047639	0.0240	$7 h$	0.017095135	0.01709
$8 p$	0.018640705	0.01864	$8 h$	0.013883519	0.01388
$9 p$	0.014865869	0.01486	9h	0.011485753	0.01148
$10 p$	0.012128229		10h	0.009651169	
$6 d$	0.029166650	0.02916	$7 i$	0.015691083	0.01569
$7 d$	0.022161826	0.02216	$8 i$	0.012871464	0.01287
$8 d$	0.017390648	0.01739	$9 i$	0.010736147	0.01073
$9 d$	0.013999880	0.01400	$10 i$	0.009082952	
10 d	0.011506513		$8 k$	0.011944531	0.01194
$6 f$	0.026350671	0.02635	$9 k$	0.010039758	0.01003
$7 f$	0.020342170	0.02034	$10 k$	0.008548707	
$8 f$	0.016156534	0.01615	$9 l$	0.009395999	0.00939
$9 f$	0.013129670	0.01313	$10 l$	0.008049285	
$10 f$	0.010872967		10 m	0.007584125	

TABLE S3: Estimated critical screening parameters of ECSC potential, for some high-lying states having $n=6-10, \ell=0-9$, along with literature results. PR implies Present Result.

State	δ_{c}		State	δ_{c}	
	PR ${ }^{\text {§ }}$	Literature		PR ${ }^{\text {§ }}$	Literature
$6 s$	0.01787828	$0.01787828^{a}, 0.01787790^{b}$	$6 g$	0.0160994830	$0.01609948^{a}, 0.016099483^{b}$
$7 s$	0.01312287	$0.01312287^{a}, 0.01312275^{b}$	7 g	0.0121108414	$0.01211084^{a}, 0.012110841^{b}$
$8 s$	0.010041420	$0.01004142^{a}, 0.01004138^{\text {b }}$	$8 g$	0.0094255746	$0.00942557^{a}, 0.009425574{ }^{\text {b }}$
$9 s$	0.007930924		$9 g$	0.0075357713	
10 s	0.0064223221		10 g	0.0061576653	
$6 p$	0.0176520702	$0.01765207^{a}, 0.0176520692^{b}$	$6 h$	0.0154554769	$0.01545548^{a}, 0.015455476{ }^{b}$
$7 p$	0.0130010639	$0.01300107^{a}, 0.013001062^{b}$	$7 h$	0.0117204888	$0.01172049^{a}, 0.011720488^{b}$
$8 p$	0.0099700872	$0.00997009^{a}, 0.009970085^{b}$	$8 h$	0.0091765721	$0.00917657^{a}, 0.009176572^{b}$
$9 p$	0.0078864055		$9 h$	0.0073701634	
$10 p$	0.0063931148		$10 h$	0.0060436156	
$6 d$	0.0172429036	$0.01724290^{a}, 0.017242903^{b}$	$7 i$	0.0113144150	$0.01131442^{a}, 0.011314415^{b}$
$7 d$	0.0127747014	$0.01277470^{a}, 0.012774701^{b}$	$8 i$	0.0089121305	$0.00891213^{a}, 0.008912130^{\text {b }}$
8d	0.0098352041	$0.00983521^{a}, 0.009835204^{b}$	$9 i$	0.0071912774	
$9 d$	0.0078012274		$10 i$	0.0059186845	
$10 d$	0.0063367620		$8 k$	0.0086398532	$0.00863985^{a}, 0.008639853^{b}$
$6 f$	0.0167081500	$0.01670815^{a}, 0.016708150^{b}$	$9 k$	0.0070041846	
$7 f$	0.0124693824	$0.01246938^{a}, 0.012469382^{b}$	$10 k$	0.0057862828	
$8 f$	0.0096491922	$0.00964919^{a}, 0.009649192^{b}$	$9 l$	0.0068128353	
$9 f$	0.0076818589		$10 l$	0.0056491977	
$10 f$	0.0062568394		10 m	0.0055096394	

${ }^{\mathrm{a}}$ Ref. [7]. $\quad{ }^{\mathrm{b}}$ Ref. [8].

TABLE S4: Eigenvalues (a.u.) of $n=3,4$ states of confined ECSC potential for $\delta=0.02$. Numbers in the parentheses denote reference energies quoted from [9].

State	$r_{c}=0.1$	$r_{c}=0.5$	$r_{c}=1$	$r_{c}=2$	$r_{c}=5$
$3 s$	4406.1416518	170.60516396	40.883123723	9.3341469004	1.0731978420
				(9.33415)	(1.07320)
$3 p$	2960.4823022	114.66355228	27.493994384	6.2889991502	0.7276959975
				(6.28900)	(0.72770)
$3 d$	1644.5499223	63.180184177	14.987462939	3.3475046681	0.3490909625
				(3.34750)	(0.34909)
$4 s$	7857.6491849	308.21724725	75.150492179	17.836089963	2.4023028763
				(17.83609)	(2.40230)
$4 p$	5918.2028888	232.44795983	56.778032985	13.530580567	1.8504011627
				(13.53058)	(1.85040)
$4 d$	4115.6026320	161.37700634	39.335318864	9.3341465110	1.2596272053
				(9.33415)	(1.25963)
$4 f$	2426.4155489	94.646597432	22.915824203	5.3620893411	0.6894218988
				(5.36209)	(0.68942)
	$r_{c}=10$	$r_{c}=20$	$r_{c}=30$	$r_{c}=50$	$r_{c}=100$
$3 s$	0.1113277900	-0.0302492345	-0.0358787689	-0.0360250925	-0.0360251051
	(0.11133)			(-0.03603)	
$3 p$	0.0691008416	-0.0319140038	-0.0358733580	-0.0359675961	-0.0359676034
	(0.06910)			(-0.03597)	
$3 d$	0.0128160637	-0.0342064512	-0.0358194164	-0.0358506603	-0.0358506623
	(0.01282)			(-0.03585)	
$4 s$	0.4250635505	0.0363462881	-0.0054277289	-0.0124953824	-0.0125717772
	(0.42506)			(-0.01250)	
$4 p$	0.3359680167	0.0277302857	-0.0066764629	-0.0124281276	-0.0124857523
	(0.33597)			(-0.01243)	
$4 d$	0.2223514916	0.0141166051	-0.0086778605	-0.0122798641	-0.0123102664
	(0.22235)			(-0.01228)	
$4 f$	0.1081309850	-0.0003604550	-0.0106312256	-0.0120295162	-0.0120381878
	(0.10813)			(-0.01203)	

[1] Y. P. Varshni, Phys. Rev. A 41, 4682 (1990).
[2] M. Demiralp, Appl. Math. Comput. 168, 1380 (2005).
[3] F. J. Rogers, H. C. Graboske Jr. and D. J. Harwood, Phys. Rev. A 1, 1577 (1970).
[4] O. A. Gomes, H. Chacham and J. R. Mohallem, Phys. Rev. A 50, 228 (1994).
[5] C. S. Lam and Y. P. Varshni, Phys. Rev. A 6, 1391 (1972).
[6] P. P. Ray and A. Ray, Phys. Lett. 78A, 443 (1980).
[7] D. S. Singh and Y. P. Varshni, Phys. Rev. A 28, 2606 (1983).
[8] I. Nasser, M. S. Abdelmonem and A. Abdel-Hady, Phys. Scr. 84, 045001 (2011).
[9] S. Lumb, S. Lumb and V. Prasad, Phys. Rev. A 92, 032505 (2014).

